If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+13y-48=0
a = 1; b = 13; c = -48;
Δ = b2-4ac
Δ = 132-4·1·(-48)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-19}{2*1}=\frac{-32}{2} =-16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+19}{2*1}=\frac{6}{2} =3 $
| 5x÷5=70÷5 | | 1/2x+3/2+18=20 | | 2/5x-1/2=7/2 | | 2a+8a+4-9=15 | | 7z−1=4z−3 | | 4y+2=54 | | 5=11-1/3x | | W²+9w=52 | | X^2-18x=760 | | 16x=9x+34 | | (1/3)x-7=15 | | 5x+2/3=22 | | 35=3n+27 | | n-(-45)=19 | | (6y+5)=(7y-5) | | 20=8+6p= | | X^2-18x-760=0 | | 4y-3-2y+1=18 | | 40+2y=0 | | 7w+77=0 | | y=4y+3=-3 | | (2x+2)=(3x-6) | | 8x+13=7x+ | | 5^2x-1=130 | | -32=4(3x+70) | | -32=4(3x+70 | | 6y-18=3y-39 | | 4(6x-7)-(3x-6)=40 | | 2/3y+6=10 | | 5m-6=2m+6 | | 5x^=80 | | 9x+3+8x+2+90=180 |